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Abstract: Hui & Lindsay (2010) proposed a new dimension reduction method for multivariate data. It was

based on the so-called white noise matrices derived from the Fisher information matrix. Their theory and

empirical studies demonstrated that this method can detect interesting features from high-dimensional data

even with a moderate sample size. The theoretical emphasis in that paper was the detection of non-normal

projections. In this paper we show how to decompose the information matrix into non-negative definite

information terms in a manner akin to a matrix analysis of variance. Appropriate information matrices will

be identified for diagnostics for such important modern modelling techniques as independent component

models, Markov dependence models, and spherical symmetry. The Canadian Journal of Statistics 40: 712–
730; 2012 © 2012 Statistical Society of Canada

Résumé: Hui et Lindsay (2010) ont proposé une nouvelle méthode de réduction de la dimension pour les

données multidimensionnelles. Elle est basée sur des matrices communément qualifiées de bruits blancs

obtenues à partir de la matrice d’information de Fisher. Leurs études théoriques et empiriques montrent

que cette méthode peut détecter des caractéristiques intéressantes à partir de données de grande dimension

même si les échantillons sont de taille modérée. L’emphase théorique de cet article était mise sur la détection

des projections non normales. Nous montrons ici comment décomposer la matrice d’information en termes

d’information définie non négative de façon similaire à l’analyse de variance matricielle. Des matrices

d’information appropriées peuvent être identifiées comme diagnostic pour les techniques de modélisation

modernes telles que les modèles en composantes indépendantes, les modèles de dépendance markovienne

et la symétrie sphérique. La revue canadienne de statistique 40: 712–730; 2012 © 2012 Société statistique

du Canada

1. INTRODUCTION

Let f (x) be a density function for the d-dimensional random vector X. The density f will be

treated as the unknown, and will be the fundamental object of our investigation. Let f (x − θ) be

the corresponding location family in θ. Assume that regularity holds, so that one can construct the

d × d information matrix JX for the parameter θ. The paper Hui & Lindsay (2010) showed that

JX can be reliably estimated and used for data-based dimension reduction to the most interesting

linear combinations of a multivariate dataset. The selected projections were those that maximized

information. The main purpose of this paper is to create a deeper understanding of how JX can be

decomposed into a summation of information matrices that carry information about such features

of f as spherical symmetry, independence, and Markov independence.
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We start with our basic motivation. With modern data gathering devices and vast data storage

space, researchers can easily collect high-dimensional data, such as biotech data, financial data,

satellite imagery and hyperspectral imagery. The analysis of high-dimensional data poses many

challenges for statisticians. One of them is how to extract interesting features in a much reduced

low-dimensional space from a high-dimensional space. Our analysis in this paper will relate JX to

such modern dimension reduction techniques as independent component analysis and graphical

models, extending the projection pursuit discussion of Hui & Lindsay (2010).

Friedman & Tukey (1974) developed projection pursuit to explore high-dimensional data by

examining the marginal distributions of low-dimensional linear projections. As argued later by

Huber (1985) and Jones & Sibson (1987), the Gaussian distribution is the least interesting one, and

so the most interesting directions should be those that show the least normality. The overall aim

of projection pursuit was to find the least normal projections directly and then use them as the data

summaries. One drawback of these methods has been their high computational cost, especially for

high-dimensional data, due to the need to search through the large number of possible projections.

Hui & Lindsay (2010) proposed a novel dimension reduction approach to projection pursuit

that changed the computational search problem into an explicit eigenanalysis problem. From the

data reduction point of view, they stated that the goal was not just to find interesting directions, but

also to eliminate uninteresting ones. By uninteresting they meant the projections that were most

similar to “white noise”; that is, their distribution was marginally normal and also independent

of all orthogonal projections. Unlike conventional projection pursuit, which is focused only on

marginal features, white noise analysis included the consideration of dependence relationships.

The projections used in their analysis also had an interpretation as being the most informative

components, in the Fisher information sense.

To illustrate the logic of this methodology, in Figure 1 we show two plots derived from an

analysis of Fisher’s Iris data, which contains 150 observations of four measurements: sepal length,

sepal width, petal length, and petal width. There are three classes of 50 observations each, where

each class refers to a species of iris plant. As will be seen, one species is quite different from the

others.Wewill ignore the class labels and use the white noise matrix analysis to check whether the

information matrix uncovers information about the class labels. The white noise matrix is 4 × 4,

so there are four eigenvalues and eigenvectors. We use the eigenvectors to form the projections.

In Figure 1a, we show the two projections of the data that are the most similar to white noise;

they clearly do not reveal any interesting cluster information. Indeed, the plot looks like it could

be multivariate normal data. However, one could propose other hypotheses about this scatterplot.

Even if not normal, is the distribution spherically symmetric? Or are the two coordinate variables

independent? As we will see, one can address these issues using our information decomposition.

By comparison, Figure 1b shows the scatter plot of the two most informative orthogonal

projections. The first component, placed on the x axis, clearly separates the three species. The

second component displays a more subtle effect, in that there is dependence between the first

and second coordinates reflected in the change of variance across the plot. Indeed, one of the

characteristics of white noise analysis is that large information values can either reflect failure of

marginal normality or dependence between variables.

The emphasis in Hui & Lindsay (2010) was strictly on diagnostics for non-normality. We

review these results in Section 2. However, the normal density is the unique distribution that

simultaneously displays spherical symmetry and independent coordinates. In Section 3, we will

show how one can create an additive decomposition of the information matrix whose compo-

nents can reveal more about the multivariate structure of f , including dependence and symmetry

relationships. In particular, these information components are diagnostic for such important mod-

ern modelling techniques as independent component models, graphical models, and spherical

symmetry.
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Figure 1: (a) The scatter plot of the two LEAST interesting coordinate projections based on white noise
matrix analysis for Irish Flower data. (b) The scatter plot of the two MOST informative solution projections
based on white noise matrix analysis for Irish Flower data. [Colour figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com]
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The decomposition results of Section 3 treat f as known. In Section 4 we consider the con-

sequences for our theory when one estimates f using a kernel density estimator. Finally, we

provide some discussion in Section 5, including our thoughts on the suitability of these meth-

ods for “small n, large d” analysis. Our focus throughout the paper will be on the theoretical

developments, leaving data analysis for future work.

2. WHITE NOISE MATRIX

2.1. Introduction
Hui & Lindsay (2010) developed the following approach to extract lower dimensional projections

of data that contain interesting nonlinear features. It could be calledMost Informative Component
Analysis.

We find it helpful to describe the analysis as occurring in two stages of “whitening the data.”

We start with vector data X. In the first stage, we standardize the data to the vector Y = �−1/2X,

where � = var(X). Now var(Y) = I, so the variables are uncorrelated. Hence there are no longer

any linear regression relationships between variables. The Y variables also have no principal

component information. Based on variable Y we then create a Fisher information matrix for Y,

denoted JY.

In the second stage of “whitening,” we create an orthogonal matrix � using the eigenanalysis

of JY. The newvectorZ = �TY = �T�−1/2X has a diagonal Fisher information JZ. The diagonal

entries of this matrix measure the information in eachZ coordinate.We then use theZ coordinates

with the greatest information in the data analysis.

To be more specific, let X = (X1, . . . , Xd)
T be a d-dimensional random vector. Let density f

have mean zero. We create the location family density f (x − θ) with mean θ = (θ1, . . . , θd)
T and

covariancematrix�X. In this article, we assume the density f (·) has continuous second derivative
and that it satisfies the following regularity conditions that are standard in likelihood analysis:

∫
f (x − θ) dx = 1,

∫
∂f (x − θ)

∂θ
dx = 0,

∫
∂2f (x − θ)

∂θθT
dx = 0 (1)

for any θ. Further, the integration and derivatives are exchangeable. Throughout this discussionwe

will also assume that the density f is sufficiently regular for the standard likelihood calculations to

be valid for various conditional and marginal terms. For example, if x has one dimension, then the

normal distribution and t-distribution satisfy the above regularity conditions. In fact, in applica-

tions, we will estimate f based on kernel smoothing by the normal density (see Section 4 for more

details), which means our implementation always satisfies the necessary smoothness conditions.

Let

∇θf (x − θ) =
(

∂

∂θ1
f (x − θ), . . . ,

∂

∂θd

f (x − θ)

)T

= −∇xf (x − θ).

The (Fisher) information matrix for density f (x − θ) is then defined to be the variance matrix for

the score vector

JX = E
[∇θ log f (X − θ) · (∇θ log f (X − θ)

)T] = −E

[
∂2 log f (X − θ))

∂θ∂θT

]
. (2)

Note that for the location family density f (x − θ), the information matrix JX does not depend

on θ, that is, X and X + θ have the same information for any θ. Therefore, from now on, we will

omit θ in the density f (·).

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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We define the (Fisher) score vector for the density f to be ∇x log f (x). Then the Fisher

information matrix defined in (2) for density f (x) can be also written as

JX = E
[∇X log f (X) · (∇X log f (X)

)T] =
∫ ∇xf · ∇xf

T

f (x)
dx = −E

[
∂2 log f (X))

∂X∂XT

]
. (3)

We will use the notation Jf instead of JX when it is useful for clarity regarding the density

involved.

An important feature of the Fisher score vector components is that they are simultaneously

joint likelihood scores and conditional likelihood scores. For example, if ∇j is the jth partial

derivative, we can write

∇x1 log f (x) = ∇x1f (x)
f (x)

= ∇x1f (x1|x2, . . . , xd)

f (x1|x2, . . . , xd)
= ∇x1 log f (x1|x2, . . . , xd).

Later in this paper we will use this structure in various projection arguments.

The Fisher information inequality (Kagan et al., 1973) states that

JX ≥ �−1
X , (4)

and equality holds if and only if f (x) is the multivariate normal density, where A ≥ B means that

A − B is a positive semi-definite matrix. Define the standardized Fisher information matrix for
density f (x) to be

WX = �
1/2
X JX�

1/2
X . (5)

Hui & Lindsay (2010) called WX (also denoted by Wf ) the white noise matrix. Then we have the

following white noise matrix inequality:

Proposition 2.1. Wf ≥ Id and equality occurs if and only if f (x) is a multivariate normal
density.

This inequality is important for data analysis because of the transformation rules for Fisher

information. We note that if X has density f , the Fisher information for any linear transformation

Y = AX having density g is

JY = (A−1)TJXA−1. (6)

Using A = �
−1/2
X shows that the standardized vector Y = �

−1/2
X X satisfies JY = WX, so the

white noise matrix can be viewed as the information matrix for standardized data. Moreover, the

white noise matrix for Y is

WY = �
1/2
Y JY�

1/2
Y = JY, (7)

since �Y = Id . Hence Y’s information has a lower bound of I based on Proposition 2.1. In

addition, all the eigenvalues of JY are greater than or equal to 1.

Hui&Lindsay (2010) proposed using thewhite noisematrix JY = WX to detect the interesting

low-dimensional features in the standardized data. Therefore, without loss of generality, we will

assume that Y = X has been standardized such that E(Y) = 0 and cov(Y) = Id .

Proposition 2.2. The ith diagonal term of JY for Y reaches the lower bound of 1 if and only
if Yi is marginally normally distributed and independent of any Y〈i〉, with probability one over

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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Y〈i〉’s distribution, whereY〈i〉 = (Y1, . . . , Yi−1, Yi+1, . . . , Yd). We will call such a Yi awhite noise
coordinate.

In Section 3, we will provide an alternative proof and interpretation for the above result. We

next use the white noise matrix to derive informative linear combinations of the Y’s. Based on the

eigendecomposition of JY, we can write �TJY� = �, where � = (γ1, . . . , γd) is orthogonal and

� = diag{λ1, . . . , λd}; we assume λ1 ≥ λ2 ≥ · · · ≥ λd . Let Z = �TY, with density h(z). Then,
based on (6), the Fisher information matrix for Z is JZ = �TJY� = �.

Note that when some of the eigenvalues of JY are equal, the transformation � is not unique. In

particular, if there are multiple eigenvalues of exactly 1, then there is a subspace of eigenvectors,

any basis for which generates white noise variables. It is important that these variables are not just

Gaussian, but also independent of the variables in the orthogonal subspace. This will be called a

white noise subspace.
If λk+1 = 1, then λj = 1, j ≥ k + 1. By Proposition 2.2, Zk+1, . . . , Zd are all white noise

coordinates and thus do not carry any useful information. Therefore, we can simply use the

“informative” projections (Z1, . . . , Zk) for further data analysis. In practice, we might also just

use a smaller set of projections (Z1, . . . , Zm), where m < k (such as m = 1 or 2), and we can

then say they are the m most informative projections.
Note that in order to apply the above method to data, we will need to estimate � so as to find

�−1/2 and then estimate JY so as to estimate �. We will review the estimation methods given by

Hui & Lindsay (2010) in Section 4.

Example 2.1 Let X = (X1, X2, X3), X1 ∼ 0.5N(−3, 1) + 0.5N(3, 1) and X2, X3 be N(0, 1).
In addition, X1, X2, X3 are independent. The covariance matrix for X is diagonal, so after
standardization, Y2 = X2 and Y3 = X3. The information matrix for Y is diagonal, so � = I, and
Z = Y. Therefore, Z2 = X2 and Z3 = X3 form a two-dimensional white noise subspace for this
model andZ1 = aX1 is the interesting direction that shows the least Gaussian distribution, where
a = {var(X1)}−1/2.

3. SCORE ANOVA

In this section we show how the Fisher information matrix can be decomposed into a sum of

positive definite covariance matrices, each of which corresponds to a separate “lack of fit” term.

We will focus on decompositions that provide information about symmetries of densities and the

independence of coordinates, as well as the Markov dependence between variables.

We will let U(x) = ∇x log f (x) and we will say that U(x) = U1(x) + U2(x) is an orthogonal
decomposition of U if E(U1) = E(U2) = 0 and if E(U1U

′
2) = 0. A consequence of having an

orthogonal decomposition is that if we let J1 = E(U1U
′
1) and J2 = E(U2U

′
2) be the information

matrices corresponding to U1 and U2, then Jf = J1 + J2 is an information decomposition.

3.1. The Normality Decomposition
Our first decomposition, the normality decomposition, generates as a corollary the original infor-
mation inequality.We assume that we have a standardized Y variable (E(Y) = 0 and var(Y) = I).

Let φ(y) denote the standard normal density.

Proposition 3.1. The scores U1 = ∇ log(φ(y)) and U2 = U − U1 are an orthogonal decompo-
sition of U. The Fisher information for Y can therefore be decomposed as Jf = Jnlof + I, where
Jnlof , the normality lack of fit matrix, is

Jnlof = E(U2U
T
2 ) = E

[∇ log(f (Y)) − ∇ log(φ(Y))
] [∇ log(f (Y)) − ∇ log(φ(Y))

]T
.

We have Jnlof = 0 if and only if U2 = 0 a.e.; that is, if and only if f is standard normal.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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Proof. Note that ∇ log(φ(y)) = −y. Then the cross product terms in the expansion of Jnlof

are

E
[∇ log f (Y)∇T log(φ(Y))

] =
∫

∇f (y)∇T log(φ(y)) dy

=
∫

∇θf (y − θ)yT dy
∣∣
θ=0

= ∇θ

∫
f (y − θ)yT dy

∣∣
θ=0

= ∇θθT
∣∣
θ=0

= Id.

Therefore,

E(U2U
T
1 ) = E

[∇ log f (Y)∇T log(φ(Y))
] − E

[∇ log(φ(Y))∇T log(φ(Y))
] = Id − Id = 0.

�

Proposition 2.1 is a corollary to Proposition 3.1 . We also note that the eigenvectors of JY are

identical to those of Jnlof , and so generate the same analysis as in Hui & Lindsay (2010).

Remark 3.1. It is beyond our subject here but the form of Jnlof suggests a number of possible
generalizations of white noise analysis. One could replace the density φ with g, where g corre-
sponded to a non-Gaussian density. (Orthogonality may not hold, but it still measures lack of fit.)
Or one could compare two samples by letting g be the density for the second sample.

3.2. The Conditional/Marginal Decomposition
Our second information decomposition shows that the information matrix can be used to diagnose

whether variables, or linear combinations of variables, are independent. We prove results for the

original X variables, but they apply as well to the transformed Y and Z variables. Let X =
(XT

1 , XT
2 )

T, where X1 is r dimensional, X2 is s dimensional, and r + s = d. Let

JX =
(

J11 J12

J21 J22

)
,

where J11 is the r by r matrix corresponding to X1.

Our second decomposition of U is based on the standard marginal-conditional factorization

of the density:

U = ∇ log f (x1, x2) = ∇ log f (x2|x1) + ∇ log f (x1).

If we let U1 = ∇ log f (x2|x1) and U2 = ∇ log f (x1), we can show

E
[∇ log f (X2|X1)∇T log(f (X1))

] = 0.

This is easily proved by carrying out the expectation conditionally on X1, and using the zero mean

property of scores.

Therefore we have an orthogonal decomposition U = U1 + U2:(
∇1 log f (x)

∇2 log f (x)

)
=

(
∇1 log f (x2|x1)
∇2 log f (x2|x1)

)
+

(
∇1 log f (x1)

0

)
.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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As a consequence, we can decompose the information matrix for X in the form

JX = Jilof +
(

JX1 0

0 0

)
,

where JX1 is the marginal information in X1. The independence lack of fit matrix

Jilof = var[∇ log f (X2|X1)] =
(
(Jilof )11 (Jilof )12

(Jilof )21 (Jilof )22

)
(8)

has (Jilof )11 = 0 if and only ifX1 andX2 are independent. Note that (Jilof )11 = J11 − JX1 , and the

right hand side is readily estimated from the data using the techniques of Hui & Lindsay (2010).

Similarly, based on the equation ∇ log f (x1, x2) = ∇ log f (x1|x2) + ∇ log f (x2), we obtain
the decomposition

Jf = var
[∇ log f (X1|X2)

] +
(
0 0

0 JX2

)
.

The above two decompositions can be used to prove the following proposition (Carlen, 1989;

Kagan & Landsman, 1997):

Proposition 3.2.

J11 ≥ JX1 , J22 ≥ JX2 (9)

where the equalities both hold if and only if X1 and X2 are independent. In addition, in (9), if one
of the equalities holds, the other must hold, too.

More generally, if JX is a block diagonal matrix, with blocks corresponding to subvectors

X1, X2, . . . , Xm then the subvectors are candidates to be independent of each other, and one can

test if any one subvector is independent of the rest by comparing its block of JX with the corre-

sponding marginal information. In particular, if JX is diagonal, then the variables are candidates

to be mutually independent.

This proposition has been called the “superadditivity” of Fisher information. Hui & Lindsay

(2010) added a conditional interpretation by pointing out that JX(i, i) is a weighted average of

JXi|X〈i〉 , the Fisher information values for the conditional distribution f (xi | x〈i〉), where x〈i〉 =
(x1, . . . , xi−1, xi+1, . . . , xd).

Based on Proposition 3.2, we can also see that in fact JX(i, i) ≥ JXi , where JX(i, i) is the (i, i)

element of JX.

Using the result of Proposition 3.2, we can also provide a proof and explanation different

from that in Hui & Lindsay (2010) for Proposition 2.2. Assuming Y is standardized, based on

Proposition 2.1 for d = 1, we know that JYi ≥ 1 with equality if and only if Yi has a normal

density. If the ith diagonal term of JY reaches the lower bound 1, then 1 ≤ JYi ≤ JY(i, i) = 1.

Therefore, JYi = 1 and Yi has a marginal normal density. In addition, since JYi = JY(i, i), Yi is

independent of Y〈i〉 based on Proposition 3.2.

3.3. Observed Information and Markov Independence
The observed Fisher information matrix provides a second stringent test of independence. Recall

the information identity

JX = E
[∇X log f · (∇X log f )T

] = E
[ − ∇2 log f (X)

]
. (10)
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The negative Hessian in the last expectation is often called the observed Fisher information. It

turns out to be diagnostic for theMarkov independence of variables. Recall that a pair of variables

X1, X2 are said to be conditionally independent given X3 if

log(f (x1, x2|x3)) = log(f (x1|x3)) + log f (x2|x3).

Proposition 3.3. Suppose X = (XT
1 , XT

2 , XT
3 )

T. Then

∂2 log f (x)

∂x1∂xT2
= 0, a.e.,

if and only if X1 and X2 are conditionally independent given X3.

Proof. If X1 and X2 are independent given X3, then

f (x) = f ((x1, x2) | x3)f (x3) = f (x1 | x3)f (x2 | x3)f (x3).

Therefore,

log f (x) = log{f (x1 | x3)} + log{f (x2 | x3)} + log{f (x3)}.

Then, we have

∂2 log f (x)

∂x1∂xT2
= 0.

In addition, if ∂2 log f (x)/(∂x1∂xT2 ) = 0, then

∂2 log f (x)

∂x1∂xT2
= ∂2 log f ((x1, x2) | x3)

∂x1∂xT2
= 0.

Then, log f ((x1, x2) | x3) = a(x1, x3) + b(x2, x3) for some functions a(·) and b(·) and thus

f ((x1, x2) | x3) = exp{a(x1, x3)} exp{b(x2, x3)}. Therefore,X1 andX2 are independent givenX3.

�

Thus structural zeroes of the observed information matrix are diagnostic for the conditional

independency relationships of the variables. In particular, if there are no variables in X3, then

having structural zeroes in the (1, 2) block proves the independence of X1 and X2.

3.4. Relationship to Independent Components
The results of the preceding subsection can be used to show that the Fisher information matrix

provides meaningful information about independent component analysis (Jutten & Hérault, 1991;

Common, 1994). We note that Common (1994) has had over 6,000 citations as of this writing.

Definition 3.1. We say X = (X1, . . . , Xd)
T is generated by an independent component analysis

(ICA) model (Jutten & Hérault, 1991; Common, 1994) if

X = AZ =
d∑

j=1

ajZj, (11)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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where A = (a1, . . . , ad) is a d × d nonsingular matrix, Z = (Z1, . . . , Zd)
T, and Z1, . . . , Zd are

mutually independent with unit variance.

In the ICA model, X is a vector of observed data, Z is a vector of the latent independent

components, and A is the unknown mixing matrix. Here, for simplicity, we assume that A is a

square nonsingular matrix, but this assumption can be relaxed in some situations.

The ICA analysis is closely related to the cocktail-party problem and related methods are

sometimes called blind source separation or blind signal separation. The “source” means an

original signal, that is, the independent component, such as the speaker in a cocktail party problem.

We cannot directly record the original signal Z. Instead, we only record the mixed signal X, which

is a linear mixture of original signals. The goal of the ICA model is to recover the original signals

(such as the original speaker signals in a cocktail-party problem). Therefore, the ICA model tries

to estimate both A and Z from an observed X under some conditions, that is, find a demixing

matrix W such that WX is an estimate of Z. See Hyvärinen & Oja (2000) for an introduction to

the ICA model and its applications.

It is important to recognize that there are identifiability issues with the ICAmodel. The matrix

A can be identified, up to the permutation, but only when at most one of the sources Z is Gaussian.

That is, multiple Gaussian sources are intrinsically unseparable, and so an information analysis

provides direct goodness-of-fit information about identifiability through its analysis of normality.

Based on Proposition 3.3 we have the following result.

Proposition 3.4. For a random vector X = (X1, . . . , Xd)
T, if X1, . . . , Xd are mutually inde-

pendent, then JX is a diagonal matrix.

Therefore, ifY = �−1/2X has a diagonal informationmatrixJY, it is possible that (Y1, . . . , Yd)

are mutually independent. If JY is not diagonal, we can transform the data to Z = �TY, where

� is the matrix of eigenvectors of JY. The new vector Z has a diagonal white noise matrix JZ
with the diagonal entries being the eigenvalues of JY. The transformation Z = �T�−1/2X has

therefore brought the variables through two stages of whitening; now the covariance matrices of

both vector Z and the score vector U are diagonal, and the elements of Z are twofold candidates

to be mutually independent.

Proposition 3.5. If the data X is generated by an independent component analysis model with
covariance matrix�, and the eigenvalues of its white noise matrixWX are distinct, then the trans-
formed variables Z = �T�−1/2X are the independent component variables, up to permutation,
where � is the matrix of eigenvectors of WX.

Proof. If the white noise eigenvalues are unique, then the Z = �T�−1/2X are the unique

(up to permutation) variables that simultaneously diagonalize the covariance and the information

matrix. Since the mixing matrix A also diagonalizes both, they must be equal. �

Wenote thatwhen the eigenvalues are distinct, white noise theory not only provides candidates

for the independent components, it also provides, throughmatrix decomposition,methods to check

whether independence actually holds for those candidates.

The problem becomes trickier when the eigenvalues are not distinct. Suppose that the white

noise matrix eigenanalysis of Y = �−1/2X has K distinct eigenvalues λ1 to λK, where λj has

multiplicity mj and a corresponding subspace Hj of eigenvectors. The above proposition states

that if the eigenvalues are of multiplicity mj = 1, and there exists an independent component

analysis for Y, then the matrix A has rows that correspond to the unique eigenvectors.

However, if A is identifiable, which implies that no more than one eigenvalue of JZ is 1, and

if some mj is greater than one, then any linear combination of vectors in the subspace Hj is a
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candidate to be one of the rows of A. For example, if Z1 and Z2 were standardized independent

t variables, an information analysis would not provide unique eigenvectors that would identify

Z1 and Z2 as the independent coordinates. One could still use our decomposition theory to

test whether the subspaces corresponding to different eigenvalues each generated independent

subvectors, however.

If we consider the observed information matrix instead, we can establish a matrix method to

identify the orthogonal transformation � whenever it is identifiable:

Proposition 3.6. The variables Z formed under transformation Z = �TY = �T�−1/2X are
independent components, where � is an orthonormal matrix, if and only if

∇2
z log(fz(z))|offdiag = �T∇2

y log f (y)�|offdiag = 0, a.e.,

where Boffdiag denotes all off-diagonal elements of matrix B. If independent components holds,
and there is a unique demixing matrixA, then there is a unique� for which the displayed equation
holds, and A is equivalent to �T�−1/2.

Proof. If the transformedvariablesZ are independent, then they are alsoMarkov independent,

and so the off-diagonals are zero by Proposition 3.5. Conversely, if the off-diagonals are zero

then all pairs Zi, Zj are Markov independent. That is, the graph for the variables has no edges,

and so the variables are independent. �

If one lets h(�) be the sum of the variances of the off-diagonal entries of �T∇2
y log f (y)�,

then this proposition says that min� h(�) = 0 when the ICA model holds, and in this case, �̃ =
argmin� h(�) generates the independent component model via A = �̃T�−1/2.

Of course if min� h(�) is not zero, independent components is not satisfied. In this case

rotational symmetry is an alternative hypothesis to the independent component model that can

be used to explain the existence of non-Gaussian subspaces, with mj > 1. We will examine this

hypothesis in a later section.

3.5. The Markov Decomposition
The preceding independence decomposition shows that if the Fisher information matrix JX is

block diagonal then the corresponding sets of variables are candidates to bemutually independent.

Further, we can test for this by examining the matrix Jilof of (8) for each block.

We next consider the interpretation of other blocks of zeroes in the off-diagonal regions of

the matrix. That is, how a structure of the following form might arise:

JX =




J11 J12 0

J21 J22 J23

0 J32 J33


 . (12)

where JX is the suitably partitioned Fisher information for X = (XT
1 , XT

2 , XT
3 )

T. The observed

Fisher information result in Proposition 3.3 indicates that a structural off-diagonal zero in the

(1, 3) entries of observed information tells us that X1 and X3 are independent in their conditional

relationship givenX2. Hence an off-diagonal zero in JX suggests this might be true.We now show

how to construct an information decomposition that definitively tests this hypothesis, as well as

providing a numerical measure of the degree of dependence when it exists.

Note that J13 is equal to the (1, 3) block of JX. Therefore, we have the following result.

Proposition 3.7. For the Fisher information partition of (12), we have the following results.
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a. If X1 and X3 are conditionally independent given X2, then J13 = JT
31 = 0;

b. We have

J11 = JX1,X2 (1, 1) + var
[∇1 log(f (X3|X2, X1))

]
,

where JX1,X2 (1, 1) = var([∇1 log(f (X1, X2))] is the (1, 1) blockmatrix of JX1,X2 correspond-
ing to X1 and the equality J11 = JX1,X2 (1, 1) (i.e., var[∇1 log(f (X3|X2, X1))] = 0) occurs if
and only if X1 and X3 are conditionally independent given X2;

c. We have

J33 = JX2,X3 (2, 2) + var
[∇3 log(f (X1|X2, X3))

]
,

whereJX2,X3 (2, 2) = var([∇3 log(f (X2, X3))] is the (2, 2) blockmatrix ofJX2,X3 correspond-
ing to X3 and the equality J33 = JX2,X3 (2, 2) (i.e., var[∇3 log(f (X1|X2, X3))] = 0) occurs if
and only if X1 and X3 are conditionally independent given X2.

Proof.

(a) The result is a corollary of Proposition 3.3.

(b) Note that log f (x1, x2, x3) = log f (x1, x2) + log f (x3 | x1, x2) creates an orthogonal decom-

position. Then, we have

J11 = JX1,X2 (1, 1) + var[∇1 log(f (X3|X2, X1))].

If var[∇1 log(f (X3|X2, X1))] = 0, then ∇1 log(f (X3|X2, X1)) = 0, a.e. (since it is a score

function and has mean 0), that is, the conditional density of X3 | X1, X2 does not depend on

X1. This in turn is equivalent to saying that X1 and X3 are conditionally independent given

X2. The reverse result is obvious.

(c) This part can be proved similarly to part b).

�

3.6. Markov Dependency
A graphical model is a probabilistic model in which a graph is used to describe the conditional

independence structure between random variables. In this section we describe how the Fisher

Information matrix provides tools for graphical models. We first give an introduction to these

concepts (Jordan, 1999; Jordan et al., 1999).

Graphical models play an important role in probability theory, Bayesian statistics, and the

design and analysis of machine learning algorithms. There are two main branches of graphical

models: Bayesian networks and Markov networks. Here we are interested in Markov networks.

Definition 3.2. Wewill say thatXs andXt areMarkov independent ifXs andXt are conditionally
independent given X〈s,t〉. We will say that a matrix G with (i, j)th element Gi,j is a Markov
dependency matrix if Gst = 0 whenever Xs and Xt are Markov independent.

The inverse of the covariance matrix, �−1, also called the precision matrix, is a Markov

dependency matrix. Under the restrictive condition of multivariate normality, the off-diagonal

zeroes are also conclusive about Markov dependency. We have now shown that JX is also a

Markov dependency matrix in Proposition 3.7, and the matrix decomposition we found can be

used to provide a conclusive test of Markov dependency, irrespective of normality.

Proposition 3.8 The Fisher information matrix JX is a Markov dependency matrix, that is, if
Xs and Xt are independent given X〈s,t〉, then Js,t = 0, where s �= t.
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In a Markov dependency matrix, we know that every non-zero entry in J implies Markov

dependence, while every zero entry is a candidate for Markov independence. One can create

a more precise test for Markov independence based on the variance of ∇1 log(f (x3|x2, x1)) or
∇3 log(f (x1|x2, x3)) as seen in Proposition 3.7(a) and (b). One could also use the variance of the
off-diagonal entries of the observed information matrix.

3.7. Measuring Lack of Spherical Symmetry
In this section, we return to the issue of repeated eigenvalues for JY. We have already seen that the

observed information matrix provides information about the independent components model in

this case. We now show that there exists a decomposition of the information matrix that provides

conclusive evidence about the alternative hypothesis of rotational symmetry in this situation.

Definition 3.3 A (d × 1) random vector X is said to be spherically symmetric if the distribution
of X is identical to QX for all (d × d) orthogonal matrices Q.

Maxwell (1860), Bartlett (1934), and Hartman & Wintner (1940) are the three earliest pa-

pers pertaining to spherically symmetric distributions. Spherically symmetric distributions are

appearing with increasing frequency in the literature and are the usual assumptions used in many

dimension reduction algorithms (Li, 1991; Cook & Nachtsheim, 1994; Cook & Li, 2002).

Proposition 3.9. If Y is spherically symmetric with covariance � and white noise matrix JY,
then both � and JY are multiples of the identity matrix.

Proof. The invariance property of the spherically symmetric distribution implies that

Q′�Q = � for any orthogonal Q. If we let Q be the eigenvectors of �, then we see that �

is diagonal. Clearly the symmetry means that all the diagonal elements are equal. A similar argu-

ment, using the transformation properties of the Fisher information in (6), shows that it is diagonal

with equal entries on the diagonal. Hence the white noise matrix must also be a multiple of the

identity matrix. �

From this result, it is clear that we cannot distinguish between spherically symmetric densities

and i.i.d. coordinate densities based only on the matrices � and JY. However, these two classes

of densities have very little overlap. Maxwell (1860), Bartlett (1934), and Hartman & Wintner

(1940) proved that the spherically symmetric random vector X has independent components if

and only if X follows a multivariate normal distribution.

There is conclusive evidence that the distribution is not spherically symmetric if the eigenval-

ues of the Fisher information are not all equal. Thus we consider how we might identify a radial

symmetry model when the eigenvalues are equal.

Definition 3.4 A (d × 1) randomvectorXwithmeanµ and covariance� is said to be elliptically
symmetric (Kelker, 1970) if its density function f has the structure

f (x) = k · g
(
(x − µ)T�−1(x − µ)

)
,

where k is a constant, µ is the mean of X, and � is the covariance matrix of X.

Note that if µ = 0 and � is an identity matrix, then X has spherical symmetry. If X is ellip-

tically symmetric with covariance matrix � and mean µ, then Y = �−1/2(X − µ) is spherically

symmetric. In addition, based on Proposition 3.9, the white noise matrix, JY, is diagonal and has

equal eigenvalues. If the diagonal entries of the matrix JY equal one, then we know that Y is

normal, and the elements are independent variables. However, if the diagonal entries are not one,

then the variables are not normal.
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Therefore, if we carry out a white noise analysis, and the eigenvalues are distinct, the uniquely

defined Z variables are candidates for independent components, but not for spherically symmetric

components since a spherically symmetric density has equal eigenvalues. If some of the eigen-

values are the same, then the corresponding subspace is a candidate either for being spherically

symmetric or for having independent components, or neither. We can test for the presence of

spherical symmetry by using the following device.

We will assume the variables are quasi-independent, so that the white noise matrix and the

information matrix are equidiagonal (diagonal with equal diagonal values), and we have non-

unique eigenvectors. Given a non-zero vector x, let r2 = xTx, and let Px denote the projection

matrix onto vector x, namely

Px = x(r2)−1xT = r−2xxT.

We call U1 = Px∇ log f (x) the radially projected score function, and let U2 = U − U1. We

note that U1 and U2 are in fact orthogonal for every fixed x, and so we have an orthogonal

decomposition.

One characterization of a spherically symmetric density is that∇ log f (x) = c(x)x, where c(x)
is a scalar function. For example, for the i.i.d. normal, the log density gradient is −x. It follows
that U2 = ∇ log f (x) − Px∇ log f (x) = 0 a.e. is equivalent to the hypothesis that the density f

is spherically symmetric.

Let us then define the spherical symmetry lack of fit matrix to be

Jslof = E
[∇ log f (X) − PX∇ log f (X)

][∇ log f (X) − PX∇ log f (X)
]T

.

Further, let Jsph = E[PX∇ log f (X)][PX∇ log f (X)]T be the spherical information matrix.

Proposition 3.10. We have

JX = Jsph + Jslof .

Further, Jslof = 0 if and only if the density f is spherically symmetric.

One can carry out a further decomposition in order to understand the information content of

Jsph. We now let U1 = ∇ logφ(x) and U2 = Px∇ log f (x) − U1. If f is spherically symmetric,

then Px∇ log f (x) = ∇ log f (x), and so this is an orthogonal decomposition from our first result.

That is, it can be orthogonally decomposed into Jsph = Jglof + I, where the Gaussian lack of fit

matrix

Jglof = E{Px∇ log f (x) + x}{Px∇ log f (x) + x}T

is a matrix that is zero if the density is normal. If the data is spherically symmetric but not normal,

then its white noise matrix is equidiagonal.

4. ESTIMATION OF WHITE NOISE MATRIX

4.1. Step 1: Kernel Smoothing
To perform inference based on the preceding theory, we will need to estimate the white noise

matrix for an unknown density f . The solution of Hui & Lindsay (2010) was to use a kernel

density estimator. They showed that by using the normal kernel one could obtain a consistency

theory for the white noise subspaces that was valid even when the bandwidth was held fixed.
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Given the well known challenges of kernel density estimation in higher dimensions this is an

important result. We here extend their results to our new theory.

Given the standardized data y1, . . . , yn from density f , suppose we use the kernel den-

sity estimator f̂ (y∗) = ∑
n−1KH (yi − y∗) to replace f in our matrix calculations, where

KH (t1, . . . , td) = kh(t1)kh(t2) · · · kh(td) is an independent kernel. For any fixed bandwidth H ,

this estimator is consistent for estimating

f ∗(y∗) =
∫

kH (y − y∗) dF (y) =
∫

kH (y − y∗)f (y) dy,

but not f (y). If we wish to have bandwidth-free consistency of our method, we need to verify that

the change from f to f ∗ does not change the key information properties we have described.

IfY = �−1/2X has density f , then the random variable that corresponds to f ∗ isY∗ = Y + ε,

where ε is a vector of i.i.d. errors from the density kh(·). Our first point is that it should be highly
desirable to use a normal kernel k for smoothing, as a white noise coordinate in Y remains a

white noise coordinate in Y∗. This statement can be generalized as follows. If ε is distributed as

a multivariate normal vector with mean zero and covariance matrix H , independent of Y, then

Y∗ = Y + ε has a white noise subspace identical to that of Y. In particular, if a′Y is normally

distributed, so is a′Y∗, and so the white noise analysis is unchanged.
The effect of normal smoothing on the independent component analysis is a bit more sub-

tle. Suppose AX = �T�−1/2X = Z is an independent component representation. If X has been

standardized to variable Y = �−1/2X, and we apply the i.i.d. normal smoothing to Y to get Y∗,
then it is clear that Z∗ = �T(Y + ε) = Z + �Tε also represents independent components. This is

because �Tε is again distributed as i.i.d. normal, and we are convolving two independent vectors.

However, we should note that if one were to apply i.i.d. normal smoothing to X, instead

of Y, and used X∗ = X + ε for analysis, then this argument does not hold. This is because

in the transformed variable Z∗ = ��−1/2(X + ε), the vector �−1/2ε will only under special

circumstances be independent normals. One special circumstance occurs when ε is multivariate

normal with mean 0 and variance h2�.

The effect of kernel smoothing on the spherical symmetry analysis is straightforward. Suppose

that Y has a spherically symmetric distribution. Then for every orthogonal transformation �, the

distribution of �Y equals that of Y. It therefore follows that �(Y + ε) =dist Y + ε, and so Y∗ is
also spherically symmetric.

Therefore, we have the following results.

Proposition 4.1. Suppose independent normal kernel smoothing has been applied to the stan-
dardized variable Y, giving the smoothed density f ∗(y1, . . . , yd). Then

(a) Y1, . . . , Yk are mutually independent and independent of (Yk+1, . . . , Yd), where 1 ≤ k ≤ d,
if and only if Y∗

1 , . . . , Y∗
k are mutually independent and independent of (Y∗

k+1, . . . , Y
∗
d ). This

result extends to arbitrary blocks of variables.
(b) Z1, . . . , Zk are white noise subspace, that is, Z1, . . . , Zk are independent of Zk+1, . . . , Zd

and have an independent multivariate normal distribution, if and only if Z∗
1, . . . , Z

∗
k are a

white noise subspace.
(c) Y is generated by an independent component analysis, if and only if Y∗ is also generated by

an independent component analysis. In addition, they have the same mixing matrix.
(d) Y is spherically symmetric if and only if Y∗ is spherically symmetric.

Based on the above proposition, we can see that the smoothed density preserves the white

noise subspace, normality, independent components, and rotational symmetry properties, and so
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we should expect bandwidth free consistency results when we use normal kernel smoothing on

the standardized variables.

Remark 4.1. Unfortunately the Markov independence results are not preserved under kernel
smoothing, and so any results regarding consistency of estimation would require that the band-
width go to zero.

4.2. Step 2: Density Square Transformation
If we estimate JX in (3) by replacing the density f with a kernel density estimate f̂ , the integration

will not have an explicit form.One could still apply a simulationmethod to estimate the information

matrices involved. However, Hui & Lindsay (2010) proposed instead using a density square

transformation. In addition to making the computation explicit, it offered a second advantage

in that it robustified the method by downweighting outliers. In this section we address how the

square transformation might affect the decomposition of information results.

We start by creating a new random variable S that has the density

f(2)(s) ≡ f 2(s)∫
f 2(x) dx

,

where f (x) is the density of X. We then estimate the information for the density f(2)(s), which
we can denote as JS or Jf(2) .

As argued by Hui & Lindsay (2010), the square density f(2)(x) has the same contour lines

as the original f (x) and in particular the same peaks and valleys. The main changes are that the

peaks becomemore accentuated in the square density, but the tails are downweighted. In addition,

X is normal if and only if S is normal. Therefore, the density square transformation preserves

the white noise subspace. Estimating the most informative directions for S therefore seems a

useful surrogate for estimating the most informative directions for X. What concerns us here is

the effect of the transformation from X to S upon the dependency and symmetry properties we

have described.

If we plug in f(2) into (5), then we have the inequality

Jf(2) =
�

1/2
f(2)

∫ ∇xf · ∇xf
T dx�

1/2
f(2)∫

f 2(x) dx
≥ 1

4
Id, (13)

where�f(2) is the variance of S. The equality holds if and only if the standardized S is multivariate

normal.

Now JS has an explicit form for estimation provided that we estimate f using

f̂ H (x) =
n∑

i=1

1

n|H |φd

(
x − xi, 0, H

2
)
, (14)

where φd(x, 0, H2) is the d-dimensional multivariate normal density function with mean 0 and

covariance H2. See Hui & Lindsay (2010) for the explicit formula of the estimator of JS. Based

on Proposition 2.9 of Zografos, Ferentinos, & Papaioannou (1989), we know that J
f̂
2
H

→ Jf(2)

if H goes to zero (elementwise). In addition, Hui & Lindsay (2010) argued that J
f̂
2
H
can be also

considered as a direct measure of the non-normality of the kernel smoothed distribution

f ∗
(2) = f ∗(x)2∫

f ∗(y) dy
,
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where

f ∗(x) =
∫

f (y)
1

|H |φd(x − y, 0, H2) dy,

since J
f̂
2
H
is a consistent estimator of Jf ∗

(2)
without H going to zero.

We can now extend their results by noting that the squared density transformation preserves

the properties we have been investigating in this paper.

Proposition 4.2 . Suppose the random vector X = (X1, . . . , Xd)
T has the density f (x) and

the random variable S = (S1, . . . , Sd)
T has the square density f(2)(s) of f . Then we have the

following results.

(a) X1, . . . , Xk are mutually independent and independent of (Xk+1, . . . , Xd), where 1 ≤ k ≤ d,
if and only if S1, . . . , Sk are mutually independent and independent of (Sk+1, . . . , Sd).

(b) Xu and Xv are independent given X〈u,v〉 if and only if Su and Sv are independent given S〈u,v〉.
(c) X is generated by an independent component analysis if and only if S is also generated by an

independent component analysis. In addition, they have the same mixing matrix.
(d) X is spherically symmetric if and only if S is spherically symmetric.

Proof. The proofs for (a), (b), and (d) are trivial. Here, we just provide the proof for (c).

If X is generated by an independent component analysis, then there exists a nonsingular matrix

A = (a1, . . . , ad)
T, such that AX = Z, where the independent components Z has the density

f1(z1)f2(z2) · · · fd(zd). Then the density of X is

f (x) = f1
(
aT1 x

)
f2

(
aT2 x

) · · · fd

(
aTd x

)|A|.

Therefore, the density of S is

f(2)(s) ∝ f1
(
aT1 s

)2
f2

(
aT2 s

)2 · · · fd

(
aTd s

)2
.

Let W = AS, then the density of W is

g(w) ∝ f1(w1)
2f2(w2)

2 · · · fd(wd)
2.

Therefore, W1, . . . , Wd are mutually independent and thus S is also generated by an independent

component analysis with the samemixingmatrixA−1 asX. The converse can be proved similarly.

�

5. DISCUSSION

In this paper we have shown that the information content of the white noise matrix goes well

beyond detection of Gaussianity or not. It can be used as a diagnostic for such features as Markov

dependence, independent component structure, and spherical symmetry. We provided orthogonal

decompositions of the white noise matrix that could be used to test the fit of these models. In

particular, for the independent component analysis model, we proved that the white noise matrix

can be an alternative tool to estimate the demixing matrix provided that the eigenvalues of the

white noise matrix are distinct.

In this discussion we tackle the difficult question of how well the estimation methodologies

can be adapted to data where the dimension d is large relative to the sample size n.

It is clear that some modifications need to be made in these cases. If there is insuffi-

cient data X, and one uses the sample covariance Ŝ to estimate �, then the standardized data
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Y = Ŝ
−1/2X (possibly using a generalized inverse) will have no interesting structure left for

analysis. For example, if there are n = d + 1 data points x1, . . . , xd+1 in d dimensional space,

then the standardized data points y1, . . . , yd+1 are exactly the corner points of a regular simplex.

For example, when d = 2, the three y data points are on the corners of an equilateral triangle.

Hui & Lindsay (2010) did apply the white noise method to such sparse high-dimensional data

by kernel smoothing the original X variables to get X∗, then standardizing the X∗ information

matrix to form the white noise matrix. The covariance matrix for X∗ is then � + h2I, which

is invertible even when the sample covariance is used for �. As we noted above the Gaussian

detection properties will be preserved over all h with this kind of smoothing, but the guaranteed

independence detection propertieswill be lost.However, onemight suppose thatwhend > n, there

is little hope of detecting independence between variables anyway, as one cannot even estimate

the full set of covariances. Hui & Lindsay (2010) did have some success in detecting mixtures

of normal densities in their limited simulation of this smoothing methodology, but we think that

application of white noise methodology in this domain requires more theoretical understanding

and more simulation experience. It is clear that part of the understanding involves the interplay

between principal components and white noise when the variables are not standardized.

As to future work, there is much to do to implement the theoretical goodness-of-fit decom-

positions described in this paper. In addition, there are more theoretical and methodological

developments that are possible. Another possible step forward would be the analysis of “local”

information to look for local structures of dependency and non-normality.

We have not discussed in this paper the possible applications of white noise analysis in a

regression setting. However we have seen through this paper that the Fisher information matrix

is directly useful for understanding the dependency relationships between variables. We believe

that new dimension reduction techniques for covariate spaces will be a straightforward extension

of the ideas in this paper.
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